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SUMMARY 

New finite element procedures based on the streamline-upwind/Petrov-Galerkin formulations are developed 
for time-dependent convection-diffusion-reaction equations. These procedures minimize spurious oscill- 
ations for convection-dominated and reaction-dominated problems. The results obtained for representative 
numerical examples are accurate with minimal oscillations. 

As a special application problem, the single-well chemical tracer test (a procedure for measuring oil 
remaining in a depleted field) is simulated numerically. The results show the importance of temperature effects 
on the interpreted value of residual oil saturation from such tests. 
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INTRODUCTION 

Many engineering problems are governed by convection-diffusion type equations with source 
terms. Fluid dynamics problems in the presence of body forces, chemically reactive flows and 
electrochemical interaction flows are only a few examples. In most of these cases the source (or sink) 
terms cause coupling in the set of governing differential equations. In this paper we focus on 
chemically reactive flows, with particular emphasis on time-dependent problems. Such problems 
involve temperature and concentrations as dependent variables. Prediction of these unknown 
variables is very important for the economical operation of various chemical engineering systems, 
including chemical reactors and enhanced oil recovery processes. 

Chemically reacting systems are governed by a set of convection-diffusion-reaction equations 
derived from energy and material balance laws. The reaction terms are assumed to be expressions 
which are products of some function of the concentrations of the chemical components and an 
exponential function of the temperature. Therefore, unless the process is isothermal or the heat 
of reaction is negligible, the source terms result in a non-linear coupling in the equation set. If 
the heat of reaction is assumed to be small, the equation governing the temperature can be 
solved first independent of the concentrations. However, the concentration equations will still 
depend on the temperature field. Deans and Lapidus'.' and several other  author^^-^ have 
investigated the chemical reactor problems by models and numerical analyses based on a uniform 
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velocity profile assumption. In practical applications the flow velocity may vary from one point 
to another substantially. Because of this the governing equations may vary in nature from 
convection-dominated to reaction-dominated. 

Convection-dominated and reaction-dominated cases pose a significant challenge for numerical 
solution of convection-diffusion-reaction type equations. It is well known that the regular 
(Bubnov-) Galerkin finite element formulations (or the classical centred finite difference schemes) 
result in spurious oscillations for convection-dominated problems, especially in the presence of 
sharp fronts in the solution. For reaction-dominated problems, in the presence of sharp gradients 
in the solution due to high reaction rates, one may again encounter numerical oscillations. This 
may occur if the flow velocity at a point approaches zero. 

Several Petrov-Galerkin formulations have been proposed for convection-dominated pro- 
blems. Among them are streamline-upwind/Petrov-Galerkin (SUPG)  formulation^,^-^ 'sigma 
weighting' and 'transport weighting' schemes," and the 'discontinuity capturing term' ap- 
proach.' l S 1  These methods have successfully been applied to various problems governed by 
the convection-diffusion, Navier-Stokes and compressible Euler equations. In Reference 12 a 
numerical diffusion/Petrov-Galerkin method was developed for steady-state reaction-dominated 
problems. 

In this paper we develop a SUPG-based finite element formulation for time-dependent 
convection-diffusion-reaction equations. For reaction-dominated problems we add second-order 
terms proportional to the element Damkoehler number to the differential equations. These second- 
order terms are determined based on a one-dimensional accuracy analysis for a two-component 
linear reaction system. We show that for such systems nodal exactness can be achieved. The 
contributions of the numerical second-order terms become significant only where the reaction 
rates are very high. 

Numerical solution of convection-diffusion-reaction equations has a wide range of applications 
in the area of oil recovery. An important application is the simulation of the single-well chemical 
tracer (SWCT) m e t h ~ d . ' ~ . ' ~  The SWCT method was developed to measure the residual oil 
saturation after water flooding an oil reservoir. The method depends on chromatographic 
separation caused by the local equilibrium distribution of each tracer between flowing and non- 
flowing fluids. A major advantage of the SWCT is that the tracers are produced back into the same 
wellbore from which they are injected into the target formation. This avoids various complications 
which might occur if the tracers were transported to and produced from a nearby well. A secondary 
tracer, which is produced during the 'shut-in' period by chemical reaction, makes it possible to 
avoid reversing the separation of the tracers when the flow is reversed during production. 

In past simulations material balance equations for the tracers were solved assuming constant 
temperature in the formation. This does not account for the fact that the temperature of the 
injection fluid is almost always lower than the reservoir temperature. In our simulations we 
obtain more reliable residual oil saturation values by considering the effect of the temperature 
of the injection fluid on the reservoir temperature distribution. This is important because both 
the reaction rates and the equilibrium distributions of tracers depend on the temperature field. 
For this problem we compare our numerical results to field data. 

In section 2 the problem statement is given. The finite element formulation and the analysis of the 
reaction-dominated flows are described in Sections 3 and 4. Numerical examples are presented 
in Section 5. The SWCT application is covered in Section 6. Conclusions are given in Section 7. 

2. PROBLEM STATEMENT 

Let R be an open region of WSd, where I Z , ~  is the number of space dimensions, and let r and 
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SZ denote its boundary and closure respectively. Spatial and temporal co-ordinates are denoted 
by XESZ and t € [ O ,  TI. 

Consider the following system of ndof partial differential equations, with ndof being the 
number of degrees of freedom: 

(1) pi a$'/& + u.V$' - V*(K~.V$') + R' = 0, i = 1,2,. . . , n d o f ,  

where $'(x, t )  is the ith dependent (unknown) variable. The velocity field is represented by u, and pi  
and K~ are the accumulation capacity and diffusion tensor for the ith variable. The source/sink term 
R' in our cases is due to chemical reaction; it is through this term that the equations are linearly or 
non-linearly coupled. We assume that the velocity field is given, and is divergence free, That is, 

v . u = o .  (2) 
The boundary r is assumed to be decomposed as follows: 

r = r,,urh, , (3) 

@=r,,nrh2. (4) 

$'(x, t )  = &, t ) ,  VxEr,,, t ~ ( 0 ,  T ) ,  i = L2, .  . . , n d o f ,  ( 5 )  

n(X)'Ki(X)' v$i(x, t )  = hi(x,  t) ,  vxerh,, tE(O,  T )  7 i = 1 9 2 9 .  . . 7 ndof 9 (6)  

The boundary is allowed to have both Dirichlet and Neumann conditions given, respectively, by 

where n is the unit outward normal vector to the boundary and gi  and hi are prescribed functions. 
The initial/boundary-value problem for (1) consists of finding the unknown vector variable { $ i }  

on Sr which satisfies (l), the boundary conditions (5) ,  (6), and the following initial condition: 

$'(x,O) = $b(x), i = 1,2,. . . ,rldof,  (7) 
where $h is a given function. 

For the application problems we study in this paper, the equations of (1) are derived from the 
appropriate material and energy balance laws. In all cases, we have two chemical components A 
and B with concentrations CA and CB as dependent variables. In some cases, depending on the 
chemical reaction model, we also have the temperature T as a dependent variable. Then the 
dependent variable vector ( I c l i )  is defined as follows: 

For simplicity we consider only a first-order irreversible reaction 

A - + b B ,  (9) 
where A is the reactant, B is the product, and b is the stoichiometric coefficient of the reaction. The 
source/sink (reaction) vector { R'}  is given as 

The chemical reaction term, expressed by the Arrhenius kinetics, is ko exp { - E/ (RT)}  where ko 
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is the reaction rate coefficient, E is the activation energy and R is the gas constant. The term pc, is 
the heat capacity per unit volume and AH the heat of reaction per mole of the reactant. 

3. FINITE ELEMENT FORMULATION 

Consider a discretization of R into element subdomains Re, e = 1,2,. . . n,,, where n,, is the number 
of elements. Let re denote the boundary of P. We assume 

e'='1 

The interior boundary is defined as 
n.1 

rin,= (J re-r .  
e =  1 

Let I/' and S' denote the finite-dimensional subsets of H'(R), defined as follows: 

V i =  { w i ( w i d P ( R ) ,  w'(x)=O, on xd-,,}, (14) 

Si = { $ll $ ' d P ( R ) ,  $'(x) = gi ,  on Xd-, ,} .  (15) 

In this paper we assume that both subsets consist of the typical Co finite element interpolation 
functions. 

The discrete variational form of (1) satisfying the boundary conditions (5) and (6) and the 
associated initial condition (7) is given as follows: find $ i ~ S i  such that for all W'E V' 

jfl { wip'$f, + wiu* V$' + V W ~ . ( K ~ .  V$') + wiRi} dR 

"I 

Pi {pi$:, + u s  V$i - V .(K'* V$') + R'} dR = 

i = 1,2,. . . , ndof ,  (16) 

Jflwi($i-$b)dR = 0 ,  i =  1,2 ,..., ndof, 

where ( ),t denotes a time derivative and Pi is a perturbation to the weighting function w'. The 
Euler-Lagrange equations corresponding to ( 1  6) may be obtained by integration-by-parts: 

n.1 r 2 J wi{pi+ft + u.V$' - V - ( K ~ - V ~ / + )  + R'} dC2 
e = l  ~e 

where [ ] is the 'jump' operator. 
If the perturbation term P i  is zero, (16) leads to a regular (Bubnov-) Galerkin formulation; 
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if Pi # 0 we obtain a Petrov-Galerkin formulation. The modified weighting function 

(19) Gi = wi + pi 

acts only in the element interiors and therefore can be discontinuous across element boundaries. 
Various formulations for P i  within the framework of streamline-upwind/Petrov-Galerkin 

(SUPG), sigma weighting and transport weighting have been proposed and successfully tested by 
Hughes and Brooks,6 Tezduyar and Hughes,' Hughes et ul." and Tezduyar and Ganj00.I~ The 
recent 'discontinuity-capturing term' approach of Hughes et ul." and Tezduyar and Park" add 
another component to wi which results in smooth but crisp representation of internal and 
boundary layers. 

A consistent finite element discretization of (16) and (17) leads to a set of non-linear ordinary 
differential equations: 

Md + N(d) = F , (20) 

0) = do > (21) 
where d is the vector of (unknown) nodal values of { $i} ,  d is its time derivative, N is a non-linear 
vector function of d, F is the right-hand side constant vector and do is a given vector corresponding 
to the initial condition (7). These equations are solved by a predictor/multicorrector temporal 
integration scheme.16 

We employ the following expression for the weighting function associated with the element node 
a, degree of freedom i: 

iVi = N, + 5'(h/2)s.VNa. (22) 

For isotropic diffusivity tensors K~ = K ~ I ,  where I is the identity tensor, the parameters of (22) are 
defined as follows: 

. a'/3, Mi < 3, 
t'={1, a i > 3  

(doubly asymptotic approximation; see Reference 7), 

s = u/IIu II 9 (24) 

h =  2(xls-VNaI)-' ('element length'), 

ai = II u I1 h/(21ci) (element Peclet number). 

a 

4. REACTION-DOMINATED PROBLEMS 

In a convection-reaction problem when the ratio of the reaction rate to the convection speed at a 
point tends to a large number, the problem locally becomes reaction dominated. Near the sharp 
gradients in the solution due to high reaction/convection ratios, numerical oscillations may 
appear. In this section we perform a one-dimensional accuracy analysis which is an extension of the 
one described by Tezduyar and Park." Consider the following linear convection-reaction 
equation with constant velocity u 2 0 and reaction rate B 2 0: 

B$ + u*,s = 0 9 (27) 
where s is the distance measured in the direction of the velocity. Assuming a discretization along s 
with constant element length h, the exact solution at a mesh point j can be written as follows: 
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II/, = e - 2 ~ i  
J 9 

where y is the element Damkoehler number, defined as 

Finite element discretization 

The parameters y* and 6* 

7 = (m) 
of (27) leads to the following equation for the j th node: 

depend on the type of spatial discretization used (e.g. SUPG, 
numerical diffusion, etc.). The stencils Do, D, and D, are defined as follows: 

DO = (2r, 2( 1 - 2r), 2r), 

D, = ( - 1/29 0,1/2) , 
D2 = ( -  1/2,1, - 1/2), (33) 

where r is a parameter determined by the integration rule used for the element matrix 
corresponding to the reaction term. The following are the most common choices for r: 1/4 (one- 
point Gaussian quadrature rule), 1/6 (two-point Gaussian quadrature rule, i.e. exact integration) 
and 0 (trapezoidal rule). 

We require that the discrete finite element equations admit the exact solution (28). It can be 
shown', that such a requirement leads to the following relationship: 

6* = - cothy + y*(l/sinh2y + 4r). (34) 
We would like to employ a SUPG formulation plus some numerical diffusion i? (to be determined 
by this analysis). In this case y* and 6* are defined as follows: 

Y*=Y/(l-Y), 

6* = (1 + b))/(l - y) ,  
where 

b = (IZ/u)/(2/h). 

Carrying out the algebra we obtain 

b= -1-(1-y)cothy+y[(1/sin2y)+4r].  (38) 

Remark 

This expression .for b is different from the one obtained in Reference 12 by a term of 
[ - (1 - y)cothy]. This is because the analysis in Reference 12 was based on a Galerkin 
formulation plus some numerical diffusion. 

From (37) and (38) we determine the desired value of the numerical diffusion as a function of y: 

(39) 
This expression for i? is used to add a diffusion term for reaction-dominated problems. We will 
call this the DRD term. 

We generalize this concept to multi-dimensions by defining a numerical diffusivity tensor as 
follows: 

E(y) = u (h/2) { - 1 - ( 1 - y) coth y + y [ (1/ sinh2 y) + 4r] } . 
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where 

and s and h are given by equations (24) and (25). The unit vectors t and v are orthogonal to s 
and to each other." 

Extension to two-component systems 

Consider the special case of (1) for a two-component linear reaction system: 

I),: + U* V$' + B$' = 0, 

$: + U' Vt,b2 - bB$' = 0 .  

We propose to use an SUPG formulation on the following set of modified equations: 

$,: + U* V$' + B$' = V.(P(y)- V$'), 

$: + U' V$' - bB$' = - b V.(P(y)* V$' )  

(42) 

(43) 

Whereas the modification of (42) is justified by the analysis presented above, the modification 
of (43) simply follows from (44). This is because both sets of equations (by multiplying the first 
equation by b and adding it to the second one) must give the same governing equation for 
(b$' + $2); that is 

(46) (b$' + $2),t + u.V(b$' + $2) = 0. 

5. NUMERICAL TESTS 

Steady-state linear convection-reaction problem of a two-component system 

In this problem we neglect the diffusion term in (1) and assume isothermal conditions. This 
case is very similar to the special case considered in section 4, given by equations (42) and (43). 
The problem involves two unknown concentration values CA and CB, i.e. 

However, assuming that the boundary conditions co-operate, we need to solve only one equation 
for CA, since CB can be obtained from the following relationship: 

bCA + CB = constant. (48) 

u1 = u1(x2) = (1 - x$). (49) 

Figure 1 (a) shows the 40 x 20 rectangular non-uniform finite element mesh used for this problem. 
The boundary conditions for component A are shown in Figure 1 (c). The parameters b and k, are 
selected to be 1.0 and 5.0. The exact solution has the form 

The velocity is assumed to have a parabolic profile, descnbed as follows: 

~ ~ = ~ ; e x p [ - k , x , / ( l  -x:)], (50) 
where C;  is the Dirichlet boundary condition at x1 =O. This problem becomes reaction 
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Figure 1 .  Steady-state convection-reaction problem: (a) finite element mesh (40 x 20 element); (b) velocity profile; 
(c) boundary conditions 

dominated when u1  approaches zero. The element Damkoehler number varies from 0.1 to infinity. 
Figure 2 shows the exact, SUPG and SUPG + DRD solutions for the concentration of component 
A. The SUPG solution exhibits a 57 per cent undershoot, whereas the SUPG + DRD scheme 
provides a significant improvement by resulting in no undershoot. 

Time-dependent linear convection-reaction problem of a two-component system 

This one-dimensional problem is governed by the time-dependent versions of the differential 
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EXACT 

Figure 2. Steady-state convection-reaction problem: elevation plots for the concentration of component A 

1021 
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equations we had in the previous example. The flow parameters are selected to be pA = pB = 1.0, 
u = 1.0, b = 1.0 and k ,  = 1000. The spatial domain is [0,1] .  The initial and boundary conditions 
are given as follows: 

CA(x,O)=O, O < x < l ,  (51) 

CB(x,O)=O, o < x <  1, (52) 

[l - cos(27ct/t,)]/2, 0 < t < t , ,  
0, tat,, 

C*(O, t )  = (53) 

CB(0, t )  = 0,  t > 0 ,  (54) 
where t , = 0.4. 

In our finite element solution we use 50 elements. A Crank-Nicolson time integration scheme 
with a time step of 0.02 is employed. The flow parameters and the spatial and temporal 
discretizations lead to a Damkoehler number of 25 and a Courant number of 0.8. Note that for 
component A this problem is a highly reaction-dominated one. Figure 3 shows the exact, the 
SUPG and the SUPG + DRD solutions for components A and B. The SUPG solution exhibits 
undershoots up to 45 per cent for component A and overshoots up to 45 per cent for component 
B. The SUPG + DRD solution gives undershoots of less than 0.2 per cent for component A and 
no overshoots for component B. The SUPG ingredient of the algorithm minimizes the oscillations 
for the travelling wave solution of component B, whereas the DRD ingredient minimizes the 
oscillations due to high reaction rates. 

6. APPLICATION: NUMERICAL SIMULATION OF 
THE SINGLE-WELL CHEMICAL TRACER METHOD 

Background 

A typical oil productive formation is a stratum of rock containing tiny interconnected pores 
which are saturated with oil, water and gas. Knowledge of the relative amounts of these fluids in the 
formation is indispensable to proper and efficient production of the formation hydrocarbons. For 
example, when a formation is first drilled it is necessary to know the original oil saturation to 
intelligently plan the future exploitation of the field. In tertiary recovery techniques, such as solvent 
flooding, the quantity of oil present in the formation after water flooding will often dictate the 
most efficient manner of conducting such an operation. 

The single-well chemical tracer (SWCT) method was developed to measure the relative amount 
of fluid phases in a subterranean oil-bearing formation in which one of the phases is mobile and the 
others are essentially immobile. This method involves three time periods-injection, shut-in and 
production. During the injection period a carrier fluid containing a reactive tracer is injected into 
the oil-bearing formation through a well. After an appropriate amount of carrier-fluid-reactant 
solution has been injected, the solution is pushed farther away from the well by injection of 
reactant-free carrier fluid. The carrier-fluid-reactant solution is then permitted to remain at 
rest in the formation for a time. During this shut-in period a part of the reactant tracer reacts 
to form a product. Finally, the fluid is produced back into the same wellbore from which it was 
injected. Since the unconsumed reactant and the product have differing partition coefficients 
between the carrier fluid and the immobile phase, they are chromatographically separated in 
their passage through the formation during this production period. The amount of separation 
is a function of the saturation of the immobile fluid phase. The concentrations of reactant and 
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Figure 3. One-dimensional, time-dependent convection-reaction problem: concentration values for components A and 
B at time steps 16, 32,48 and 64. Element Courant number = 0.8, element Damkoehler number = 25 
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product are measured at the point of production and plotted versus produced volume. These 
results are matched by computer simulation of the equations governing the tracer behaviour 
during the three time periods. From the best fit, the relative proportions of mobile and immobile 
fluids in the formation can be determined. 

An advantage of the SWCT method is that the sampled reservoir volume is much larger than that 
of other methods. This results in a more effective estimation of the residual oil saturation in the 
reservoir than would be possible by the other methods. The first field test was run in the East 
Texas Field in 1968, and the method was patented in 1971.13 Since then, about 160 SWCT 
tests have been performed wor1d~ ide . I~  In previous test simulations, material balance equations 
for tracers (one-dimensional time-dependent convection-diffusion-reaction equations) are 
normally solved to predict composition of the in situ fluid. Temperature has always been assumed 
to be constant. 

The temperature of the injected fluid is normally lower than the reservoir temperature, causing a 
cooling effect near the well. This effect was not accounted for in previous numerical simulations. If 
the characteristic velocities of the temperature front and the reactive tracer are almost the same, the 
temperature shock may overlap the tracer bank during the reaction period. Since the chemical 
reaction rate is highly temperature dependent, the peak position of the product tracer may be 
displaced from that of the reactant tracer. Since the SWCT method depends on the separation of 
two tracers, deviation of the peaks in the formation affects the estimation of fluid saturation. 

In order to account for the thermal effects on the SWCT method, heat transport by convection as 
well as conduction must be considered. This requires that the computational domain be at  least a 
two-dimensional space containing the oil bearing permeable stratum as well as the underburden 
and overburden, which are the impermeable rock formations bounding the permeable stratum. 

Governing equations 

We assume that the problem is axisymmetric and select a cylindrical co-ordinate frame; 
i.e. (xl, x2) = ( r ,  z). The horizontal centre plane of the permeable stratum coincides with the plane 
z = 0. Appropriate to the SWCT configuration, the flow (which exists only in the permeable 
stratum) is radial and uniform in the z-direction. From the incompressibility condition of (2), 
the velocity field can be written as follows: 

where U,,  the radial Darcy velocity is given as 

U r  = q / ( 2 x r H ) .  

Here q is the volumetric flow rate in the well, H is the height of the permeable stratum, 6 is the 
porosity of the stratum, and So, is its residual oil saturation. The governing equations for both the 
permeable and impermeable strata can be seen as special cases of equation ( 1 )  by appropriately 
defining the vectors and tensors involved. 

We assume that the porous oil-bearing stratum is horizontal, homogeneous and incompressible, 
that the heat of reaction is negligible and that each unknown variable is always locally in 
equilibrium between phases. For the permeable stratum the vectors and tensors in (1) are defined 
as follows: 
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Components A and B are the reactant and product tracers. In the above equations, the subscripts 
o,r,w and f refer to oil, rock, water and fluid (oil and water) respectively. The distribution 
coefficients of the tracers between the oil and water phases K A  and KB are determined 
experimentally as functions of temperature. The elements of the diagonal dispersion tensors are 
assumed to be linear functions of the components of the interstitial velocity vector v. That is 

( D'k) = ( ::)vk, k = 1,.  . . , nsd, 
D!k 

where a is a scalar dispersion coefficient. 

equation for the temperature can be obtained from ( 1 )  for ndof = 1 with 
For the impermeable stratum (rock) we have only one unknown, and that is the temperature. The 

Boundary conditions and other parameters 

The computational domain is chosen such that the behaviour of the unknowns is known at the 
boundaries. For example, the horizontal centre plane of the porous stratum is taken as a boundary. 
Symmetry conditions along this plane provide no-flux conditions for all unknowns. The other 
boundaries are chosen far enough from the well in the horizontal direction and far from the 
interface of the permeable and impermeable strata in the vertical direction so that these boundaries 
are set to reservoir conditions. The boundary conditions for the three time periods are shown in 
Figure 4. 

The default values of the parameters used in this simulation are given in Table I. Note that 
during the injection period Ckj becomes zero after t = 1 day. 

Results 

We have employed a 10 x 40 rectangular non-uniform finite element mesh (shown in Figure 5). 
The mesh is refined along the interface of the two strata because of the discontinuity of the velocity 
field along this line. 

We have compared our numerical solutions (see Figure 6) for temperature to the analytical 
solutions of Lauwerier17 and Avdonin (in Spillette"). With respect to our model, Avdonin's 
model assumes infinite thermal conductivity in the vertical direction for the permeable stratum. 
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3nar = 0 

T = Tinj 
CA = cA. . '"J 
cB = CBinj 

z 
1'+ r 

IMPERMEABLE STRATUM T =Tns 

PERMEABLE STRATUM 
T =Tres 
C A = O  
C B  = 0 

I 1 
m a z  = 0, a c A / a z  = 0, a c B / a z  = o 

Figure 4. Single-well chemical tracer (SWCT) problem: boundary conditions for (a) injection period, (b) shut-in and 
production periods 

Table I. SWCT problem: default parameter values 

t inj  1 day 
tflow 2 days 
zshut-in 12 days 
tprod 6 days 
4 i n j  1000 BBLS/day 
4 p m  650 BBLS/day 
Tres 624" R 2 594" R 

20 ft 
4 0.34 
RwLl 0.25 ft 

0.02 days 
0.2 days 
1 .o 
0 0  
0.15 

34.0 Btu/fi/day/" F 
34.0 Btu/ft/day/" F 
24.96 Btu/ft3/" F 
360 Biu/fi3/o F 
62.4 Btu/ft3/" F 
0.3 

Lauwerier's model has an additional assumption of zero thermal conductivity in the horizontal 
direction for both the permeable and impermeable strata. 

Figure 7 shows the temperature and concentration profiles at the end of the injection period. 
We observed that the injection temperature creats a low temperature region. in the permeable 
stratum near the well. The reactant tracer bank is converted into a smooth hill by diffusion 
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Figure 5. SWCT problem: finite element mesh (40 x 20 elements) 

5 .  7 0 .  7 5 .  20. 2 5 .  

DISTANCE r ( f t )  

Figure 6. Comparisons with analytical solutions for the SWCT problem: the average temperature profile during the 
injection period, qinj = 200 BBLSlday 

during the injection period. Concentration of the product tracer is almost zero because of the 
slow reaction rate. 

Figure 8 shows the temperature and concentration profiles at  the end of the shut-in period. 
Thermal diffusion results in the smoothing of the temperature profile. We observe a decrease 
for component A and an increase for component B, caused by reaction during the shut-in. At 
the end of the shut-in period the peak positions of the two tracers are 1 foot apart, as shown 
by the contour plots of Figure 9. This is caused by the temperature effect on reaction rate. 

Figure 10 shows the temperature and concentration profiles after two days of production flow. 
The low temperature region in the porous stratum diminishes because of the backward convection 
of the reservoir temperature. Since the characteristic velocity of the product tracer is higher than 
that of the reactant tracer, most of the product tracer has been produced out, whereas a substantial 
part of the reactant tracer remains in the reservoir. 

Production profiles for the isothermal and non-isothermal simulations are shown in Figure 11. 
By matching the numerical solution to specific field data (Reference 14, test no. 3) we estimate 
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Figure 7. SWCT problem: elevation plot (at the end of the injection period) for (a) temperature, (b) concentration of 
tracer A, (c) concentration of tracer B 
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Figure 8. SWCT problem: elevation plot (at the end of the shut-in period) for (a) temperature, (b) concentration of 
tracer A, (c) concentration of tracer B 



0 

0 (ft) 29 

Figure 9. SWCT problem: contour plot (at the end of the shut-in period) for (a) concentration of tracer A, (b) concentration 
of tracer B 

Figure 10. SWCT problem: elevation plot (at the end of the production period) for (a) temperature, (b) concentration 
of tracer A, (c) concentration of tracer B 
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Figure 11. Comparisons with Test No. 314 field data for the SWCT problem: normalized production profiles for 
(a) isothermal simulation (SOr = 0.13). (b) non-isothermal simulation (Sor = 0.15). $&rmalired = $'/($Lax -$hi.) 
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Figure 12. SWCT problem: the effect of height of the porous formation on the temperature profile for H = 5, 10, and 
20 ft. Tnormalized = '/('re, - Tnj) 
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an oil saturation value of 13 per cent for the isothermal case. The resulting residual oil saturation 
value is 15 per cent for the non-isothermal simulation. Since no temperature history data are 
available for the SWCT field test, we assumed that the injection temperature was 30" F lower 
than the reservoir temperature. The temperature differences, however, may be up to 150" F for 
high-temperature reservoirs. The higher the temperature difference, the higher the discrepancy 
will be between the estimated saturation value for the isothermal and non-isothermal simulations. 

The thickness of the permeable formation may be estimated from the temperature histories 
if we know the thermal properties of the permeable and impermeable strata. Temperature 
production profiles for the same tracer test in three different porous formation thicknesses 
are depicted in Figure 12. As can be seen, the thicker the formation, the lower the early 
production temperature. 

7. CONCLUSIONS 

In this paper we have presented our new SUPG-based finite element procedures for time- 
dependent convection-diffusion-reaction equations. For reaction-dominated problems we have 
performed a one-dimensional accuracy analysis for a two-component linear reaction system. 
Based on this analysis we proposed a numerical diffusion/Petrov-Galerkin supplement for the 
SUPG formulations. This additional ingredient minimizes the spurious oscillations due to high 
reaction rates without introducing excessive numerical diffusion. The formulations were tested 
on steady-state and time-dependent reaction-dominated problems. The solutions obtained are 
accurate with minimal spurious oscillations. 

As a special application, numerical simulation of the single-well chemical tracer test method 
was performed. With this simulation we have shown that temperature effects play an important 
role because they influence the produced tracer profiles significantly. We have demonstrated 
that the cooling caused by injection fluid results in the peak location of the product tracer being 
further away than that of the reactant tracer. This effect leads to erroneously low values of 
residual oil saturation for the usual isothermal estimation. We also have observed that the 
temperature profiles, because they depend on the height of the permeable formation, can give 
some information about that height. 
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